Discussion

When there are lesions in the skin, there is a high risk of infection and spread of opportunistic infectious agents in the wound, which can interfere with healing and cause systemic problems. This paper reports the use of a chlorine dioxide (CD) solution as part of the treatment of four clinical cases with various skin lesions.
The first case described, which consisted of a self-inflicted burn due to misuse of the DC, was resolved without complications with the correct use of the DC skin protocol. The patient had used a concentration of 1,500 ppm of CD, applied directly to the skin and kept it occluded with a plastic bandage, which allowed the CD, which is a gas, to exert the effect of oxidative stress with a marked keratolytic effect. However, when used without occlusion, DC protected the tissue from opportunistic infections and allowed dermal regeneration, evidencing the phenomenon of hormesis24.
In the second case, the F15 protocol for infections and the preventive C20 protocol was used systemically, to replace antibiotics with the main advantage of preventing the selection of populations of resistant microorganisms, currently considered one of the most pressing problems for public health19,25,26. Likewise, the dermal protocol and the ophthalmic protocol of CD were used with the addition of DMSO in the latter. Dimethyl sulfoxide is widely used in veterinary medicine and human medicine as a vehicle of other agents contained, and there is evidence that it has anti-inflammatory properties27–29. We suggest that its use increased the penetration of the CD by cell membranes, increasing the recovery rate due to ocular immune privilege, and that the ophthalmic application of CD had a specific antimicrobial effect30,31. It should be noted that the treatment included the use of Aloe vera, a plant with known anti-inflammatory properties that promote skin regeneration32,33. Also, the treatment included the topical application of mineral oil, that is thought to protect the skin of lacerations and dryness34,35. A future controlled study would allow to determine whether the resolution of the dermal lesion and the regeneration speed was due to the use of the CD+DMSO, to Aloe vera, to the topical oil, or to the three as a synergistic whole.
In terms of the ulceration due to venous insufficiency of the third clinical case, a double (local and systemic) intervention was required to treat the failure of blood vessels and skin ulceration. Since venotonic and vasoprotective agent have no antiseptic effect, the topical and systemic CD application was the only agent to which an antiseptic and antimicrobial effect can be attributed. Likewise, anti-inflammatory properties are attributed to the addition of systemic DMSO  27–29. In this case, treatment was complemented with clinophylite zeolite, for which an antioxidant effect has been reported, one that impacts the adsorption capacity of microorganisms, removes toxins and helps reduce bad smell associated with tissue and cell breakdown36–38.
Finally, the keratolytic effect of the fourth clincal case was achieved at a dose of 3,000 ppm. This property of CD suggests that when used against a possible melanoma, the solution could promote renewal of skin tissue, and thus reduce abnormal malignant cell development. Well, it has been shown that CD oxidizes proteins, by interacting with cysteine residues, tryptophan and tyrosine39–42. Therefore, doses of 3,000 ppm of CD have high oxidative stress indices and deplete reserves of the antioxidant glutathione, thus inducing selective apoptosis 1,43,44. That is, CD has an apoptotic effect on microorganisms and epidermal cells 8,45.

Conclusion

For each case, total dermal regeneration was observed, with aesthetic results, without observable side effects or adverse interactions with any of the treatment used concurrently. that the observed results highlight that the systemic use of a CD solution at the concentration herein reported was safe for the patient. Thus, we conclude that a CD solution at concentrations between 1,000 ppm and 3,000 ppm, used topically or systemically according to the protocols used here, is safe as an antiseptic and tissue repair. The clinical cases described here provide relevant information that can aid future medical decisions to use and prescribe safe and economical antiseptic treatment of skin lesions without the need of antibiotics. Controlled clinical studies are proposed to determine the efficacy and safety of the F15, C20, D and O protocol as a treatment for skin lesions.

Informed consent

Written informed consent was obtained from the patients or their legal guardians for the publication of this case study and accompanying images.
References
1.         Noszticzius Z, Wittmann M, Kály-Kullai K, et al. Chlorine dioxide is a size-selective antimicrobial agent. PLoS One. 2013;8(11):1-10. doi:10.1371/journal.pone.0079157
2.         FDA. FOOD AND DRUGS. In: Code of Federal Regulations. Vol 3. ; 1995:Sec.173.300.
3.         Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2016;10(4):369-378. doi:10.1016/j.jiph.2016.08.007
4.         Irwin KK, Renzette N, Kowalik TF, Jensen JD. Antiviral drug resistance as an adaptive process. Virus Evol. 2016;2(1):vew014. doi:10.1093/ve/vew014
5.         Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020;18(6):319-331. doi:10.1038/s41579-019-0322-2
6.         A C, RJ W. Surgical Wound Management in Dogs using an Improved Stable Chlorine Dioxide Antiseptic Solution. Journal of Veterinary Science & Animal Husbandry. 2014;2(1). doi:10.15744/2348-9790.1.403
7.         Valente JH, Jay GD, Zabbo CP, Reinert SE, Bertsch K. Activated chlorine dioxide solution can be used as a biocompatible antiseptic wound irrigant. Adv Skin Wound Care. 2014;27(1):13-19. doi:10.1097/01.ASW.0000439060.79822.b3
8.         Zirwas MJ, Fichtel J. Chlorine Dioxide Complex Cleanser: A New Agent With Rapid Efficacy for Keratosis Pilaris. J Drugs Dermatol. 2018;17(5):554-556.
9.         Kerémi B, Márta K, Farkas K, et al. Effects of Chlorine Dioxide on Oral Hygiene - A Systematic Review and Meta-analysis. Curr Pharm Des. 2020;26(25):3015-3025. doi:10.2174/1381612826666200515134450
10.       Yeturu SK, Acharya S, Urala AS, Pentapati KC. Effect of Aloe vera, chlorine dioxide, and chlorhexidine mouth rinses on plaque and gingivitis: A randomized controlled trial. J Oral Biol Craniofac Res. 2016;6(1):55-59. doi:10.1016/j.jobcr.2015.08.008
11.       Gupta G, Mitra D, Ashok KP, et al. Efficacy of Preprocedural Mouth Rinsing in Reducing Aerosol Contamination Produced by Ultrasonic Scaler: A Pilot Study. J Periodontol. 2014;85(4):562-568. doi:10.1902/jop.2013.120616
12.       Zambrano-Estrada X, Domínguez-Sánchez C, Banuet-Martínez M, et al. Evaluation of the antiviral effect of chlorine dioxide (ClO2) using a vertebrate model inoculated with avian coronavirus. bioRxiv. Published online 2020. doi:10.1101/2020.10.13.336768
13.       Insignares-Carrione E, Bolano-Gómez B, Andrade Y, et al. Percutaneous Electrolysis in Patients with Musculoskeletal Disorders: A Systematic Review. Journal of Molecular and Genetic Medicine. 2021;16(1). www.vyphidroasesores.com/.
14.       Ogata N. Inactivation of influenza virus haemagglutinin by chlorine dioxide: oxidation of the conserved tryptophan 153 residue in the receptor-binding site. Journal of General Virology. 2012;93(12):2558-2563. doi:10.1099/vir.0.044263-0
15.       Zoni R, Sansebastiano G, Zoni R, et al. Virological Surveillance of respiratory viruses (seasonal influenza and Covid-19) View project Investigation on virucidal activity of chlorine dioxide. Experimental data on Feline calicivirus, HAV and Coxsackie B5. Article in Journal of Preventive Medicine and Hygiene. 2007;48:91-95. doi:10.15167/2421-4248/jpmh2007.48.3.99
16.       Huang J, Wang L, Ren N, Ma F, Juli. Disinfection effect of chlorine dioxide on bacteria in water. Water Res. 1997;31(3):607-613. doi:10.1016/S0043-1354(96)00275-8
17.       Eddy RS, Joyce AP, Roberts S, Buxton TB, Liewehr F. An In Vitro Evaluation of the Antibacterial Efficacy of Chlorine Dioxide on E. Faecalis in Bovine Incisors.; 2005.
18.       Ma JW, Huang BS, Hsu CW, et al. Efficacy and safety evaluation of a chlorine dioxide solution. Int J Environ Res Public Health. 2017;14(3). doi:10.3390/ijerph14030329
19.       O Young R. Chlorine Dioxide (CLO2) As a Non-Toxic Antimicrobial Agent for Virus, Bacteria and Yeast (Candida Albicans). International Journal of Vaccines & Vaccination. 2016;2(6). doi:10.15406/ijvv.2016.02.00052
20.       Mytilineou C, Kramer BC, Yabut JA. Glutathione depletion and oxidative stress. Parkinsonism Relat Disord. 2002;8(6):385-387. doi:10.1016/s1353-8020(02)00018-4
21.       Byun KH, Han SH, Yoon J won, Park SH, Ha SD. Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control. 2021;123:956-7135. doi:10.1016/j.foodcont.2020.107838
22.       Svecevičius G, Šyvokienė J, Stasiūnaitė P, Mickėnienė L. Acute and Chronic Toxicity of Chlorine Dioxide (ClO2) and Chlorite (ClO2ˉ) to Rainbow Trout (Oncorhynchus mykiss) (4 pp). Environ Sci Pollut Res Int. 2005;12(5):302-305. doi:10.1065/espr2005.04.248
23.       Drechsler PA, Wildman EE, Pankey JW. Evaluation of a Chlorous Experimental and Natural Acid-Chlorine Dioxide Teat Dip Under Experimental and Natural Exposure Conditions. J Dairy Sci. 1990;73(8):2121-2128. doi:10.3168/jds.S0022-0302(90)78892-3
24.       Rubio-Casillas P, Cambra-Madrid P. Farmacocinética y farmacodinamia del dióxido de cloro. E-CUCBA. 2021;8(16):21-35. doi:10.32870/ecucba.vi16.194
25.       Meneghin SP, Reis FC, de Almeida PG, Ceccato-Antonini SR. Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation. Braz J Microbiol. 2008;39(2):337-343. doi:10.1590/S1517-838220080002000026
26.       Al-Sa’ady AT, Nahar HS, Saffah FF. Antibacterial activities of chlorine gas and chlorine dioxide gas against some pathogenic bacteria. EurAsian Journal of BioSciences Eurasia J Biosci. 2020;14:3875-3882.
27.       Aronson J. Dimethylsulfoxide. In: Meyler’s Side Effects of Drugs. Elsevier; 2016:992-993. doi:10.1016/B978-0-444-53717-1.00633-8
28.       Gad SE, Sullivan DW. Dimethyl Sulfoxide (DMSO). In: Encyclopedia of Toxicology. Elsevier; 2014:166-168. doi:10.1016/B978-0-12-386454-3.00839-3
29.       Elisia I, Nakamura H, Lam V, et al. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis. PLoS One. 2016;11(3):e0152538. doi:10.1371/journal.pone.0152538
30.       Zhou R, Caspi RR. Ocular immune privilege. F1000 Biol Rep. 2010;2(3). doi:10.3410/B2-3
31.       Peyman GA, Schulman JA. Intravitreal drug therapy. Jpn J Ophthalmol. 1989;33(4):392-404.
32.       Davis R, Leitner M, Russo J, Byrne M. Anti-inflammatory activity of Aloe vera against a spectrum of irritants. J Am Podiatr Med Assoc. 1989;79(6):263-276. doi:10.7547/87507315-79-6-263
33.       Egesie UG, Chima KE, Galam NZ. Anti-Inflammatory and Analgesic Effects of Aqueous Extract of Aloe Vera (Aloe Barbadensis) in Rats. Vol 14.; 2011. www.ajbrui.net
34.       Araújo N, Vasconcellos S, Líquida V, et al. Uso de vaselina líquida en la prevención de laceración perineal durante el parto. Revista Latino-Americana de Enfermagem . 2008;16(3). www.eerp.usp.br/rlae
35.       Draelos ZD. The science behind skin care: Moisturizers. J Cosmet Dermatol. 2018;17(2):138-144. doi:10.1111/jocd.12490
36.       Deinsberger J, Marquart E, Nizet S, et al. Topically administered purified clinoptilolite‐tuff for the treatment of cutaneous wounds: A prospective, randomised phase I clinical trial. Wound Repair and Regeneration. 2022;30(2):198-209. doi:10.1111/wrr.12991
37.       Ranftler C, Nagl D, Sparer A, et al. Binding and neutralization of C. difficile toxins A and B by purified clinoptilolite-tuff. PLoS One. 2021;16(5):e0252211. doi:10.1371/journal.pone.0252211
38.       Özogul F, Šimat V, Gokdogan S, Regenstein JM, Özogul Y. Effect of Natural Zeolite (Clinoptilolite) on in vitro Biogenic Amine Production by Gram Positive and Gram Negative Pathogens. Front Microbiol. 2018;9:2585. doi:10.3389/fmicb.2018.02585
39.       Augustyn W, Chruściel A, Hreczuch W, Kalka J, Tarka P, Kierat W. Inactivation of Spores and Vegetative Forms of Clostridioides difficile by Chemical Biocides: Mechanisms of Biocidal Activity, Methods of Evaluation, and Environmental Aspects. Int J Environ Res Public Health. 2022;19(2):750. doi:10.3390/ijerph19020750
40.       Tan HK, Wheeler WB, Wei CI. Reaction of chlorine dioxide with amino acids and peptides: kinetics and mutagenicity studies. Mutat Res. 1987;188(4):259-266. doi:10.1016/0165-1218(87)90002-4
41.       Ison A, Odeh IN, Margerum DW. Kinetics and mechanisms of chlorine dioxide and chlorite oxidations of cysteine and glutathione. Inorg Chem. 2006;45(21):8768-8775. doi:10.1021/ic0609554
42.       Stewart DJ, Napolitano MJ, Bakhmutova-Albert E v., Margerum DW. Kinetics and Mechanisms of Chlorine Dioxide Oxidation of Tryptophan. Inorg Chem. 2008;47(5):1639-1647. doi:10.1021/ic701761p
43.       Mytilineou C, Kramer BC, Yabut JA. Glutathione depletion and oxidative stress. Parkinsonism Relat Disord. 2002;8(6):385-387. doi:10.1016/s1353-8020(02)00018-4
44.       Isabel Amores-Sánchez M, Medina, Medina MÁ. Glutamine, as a Precursor of Glutathione, and Oxidative Stress. 1999;67(0):100-105. doi:10.1006/mgme.1999.2857
45.       Smirnova G v., Oktyabrsky ON. Glutathione in Bacteria. Biochemistry (Moscow). 2005;70(11):1199-1211. doi:10.1007/s10541-005-0248-3